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In the present paper the study of controlled mechanical systems, which was
started in [1],, 1s continued. The general questions in the analytic theory
of controlled systems are considered. It 1is shown that the equations of
motion of the controlled system may be written in all the fundamental forms:
as Lagrange equations, as canonic equations, and as Appell's equations. The
canonlc transformations of holonomic controlled systems are considered. The
equations of motion of nonholonomic controlled systems are derived.

The indices encountered in the paper take the following values:

p=1,2, .., a3 =mn=1,2, ., b i=12 .., 38 a p=12, ..., s=3n—a-h
T, =1, 2, ..., p; Mp=1,2, .., 0L =12 .., p—1; T=1,2, ...,¢
® =1, 2, ..., s—¢; v=1, 2, ..., k

1. A system of n particles is moving relative to a fixed Cartesian
coordinate system. We shall denote the coordinates and the mass of the first
point of the system by x,, xp, X and m;, my, m3 , respectively, of the
second point by x., xs, x5 and m,, mg, mg etec.

Let the system be subject to constraints among which there are some para-
metric ones. We shall denote the control parameters of the system by u,,
Ugs . ves Uy . Let

f&‘ (t:xls seey $3‘n) = 0: P (t’xl?""xz‘m’ Ugyerey uk) =0 (1'1)

be the constraint equations of the system.

The constraints on the system will be taken as ideal. Then, the D'Alem-

bert~Lagrange principle is valid for it [1]; for the true acceleration of
the system, the relation

D (maz” — X3) 8z = 0 (1.2)

holds for all the possible displacements of the system. The latter are
given [ 1] by the relations
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of o9,
D7z 82 =0, g dz=0 (1.3)

The quantities JX,,...,Xs;, 1in the relation (1.2) represent components
along the coordinate axes of the active forces acting on the system. We
shall take the quantities UX;,...,%4;, to be definite functions of time, of
the system éoordinates, and of the veloclties of the system polnts, and also
of the system control parameters. The latter assumption shows that the
system admlts of dynamic control as well as kinematlc.

The advantage of controlled systems over uncontrolled ones 1s the possi-
bility of action through the control parameters on the motion of the system.
The control parameters, by thelr very nature, are undefined variables which
may be dealt with arbitrary. By entering into the equations of motlon of
the controlled system (through the constraints on the system and through the
forces acting on 1t), the control parameters essentially open up to the
indicated system of equations. The equations of motlon, therefore, by them-
selves do not determine the motion of the controlled system; this latter 1s
determined only after there is given any conditlons whatsoever whlch would
permit us to close the system of equations of motlon of the controlled sys-
tem. Here 1s the source of the flexibility of the controlled systems.

2, Let y,,...,x, be some functions of time, of the coordinates, and per-
haps, of the control parameters. We write Equations

Xa(t, zla---yxsﬂa ulv-“vuk) = {Ia (:1)
and use them to supplement the system of equations (1.1). Let us assume

that the total number of Equations (1.1) and (2.1) equals 3n, and that the
functions y, are such that the system of equations (1.1) and (2.1) does

not depend on the variables x,,...,xs, . Then thils system can be solved
for x,,...;%a, . Thus we have
zi = 2i (&, QyeeesQar Ulyeoo,Up) (2.2)

For fixed values of the control parameters there exlsts a one-to-one
correspondence between the quantitles g¢,,...,4, and the assumed constraints
on the position of the system. By analogy with the mechanics of uncontrol-
led systems, we shall call the quantitles g¢,,...,q, the generalized or
Lagrangian coordinates of the controlled mechanical system being consldered.
Equalities (2.2) give explicit expressions for the Cartesian coordinate sys-
tem in terms of its generalized coordinates, of time, and of the control
parameters. It is not difficult to show that equalitiles (2.2) lead to the
following explicit expressions for the possible displacements of the system

61}
8z = ) e 82 (2.3)

where &g,,...,8¢, are srbitrary quantities.
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Let us substitute Expressions (2.3) for the possible displacements of the
system into the fundamental equation of mechanics (1.2). We get

oz,
LA ;) — = 2.4
M8ga ) (muzi” — X3) 52, 0 (2.4)
Let us transform the left-hand side of this equation. First of all,from
the equality oz, oz, oz,
1 ’ 1 1 ?
=gt + 5 + A, ¥

obtained by differentiating (2.2) with respect to time, we find

Oz, oz’ dz; dzx,”
%% 4% T (2.5)
aq ag,’ dt dq, aq,

-3 &
Not e . It should be noted that here and in what follows, the control

parameters, along with the system coordinates, are taken to be independent
variables.

Taking equality (2.5) into account, we have

A 4 0Oz
Zmﬂi 7, Emv’”t — A miz dt 3g,
_d 9T _ T '
g Sl oo = Bmal o =i =G (7= 4 Smer)

Here T 1s the kinetic energy of the system. By iIntroducing these ex-
pressions lnto relations (2.4), we write them as

Soae(fr i — =) =0 (e=Zxgt) @0

Here the Qa are the usual generalized forces. The quantitiles 6qa are
arbitrary and, therefore, from (2.6) we find

S AT g, = Ua (2'7)

Thus, the equatlions of motion of the controlled system have the form of
the usual second-order Lagrange equations.

If the forces acting on the system possess a force function U s then the
generalized forces @, may be represented in the form Qq = aU/éga ; and
Equations (2.7) reduced to the form

o | (2.8)

where [ =T + U 1s the Lagrange function of the system.

The number of equations in each of the systems {2.7) and {2.8) equals the
number of genertlized coordinates. However, besides the generalized coordi-
nates, these equations also contain the control parameters which still re-
main as completely undetermined variables. Therefore, the indicated systems
of equations are open and, as noted at the end of the preceding Sectlon, the
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motion of the system 1s not determined by them.

3, Let us denote

= aT / 8¢, 3.1)

and let us call the gquantities Py the generalized momenta of the system.
Let us introduce into consideration the function

=2 pgs — T (3.2)

With the ald of {3.1) we eliminate from it the generalized velocities gsﬁ
Then #Z* will be a function of time, of the generalized coordinates and mo-
menta, and also of the control parameters and their derivatives. Let us
find the derlvatives of g* wlth respect to Py &nd dq -+ By differenti-~
ating K* as a composite function and taking (3.1) into consideration, we

get D0
oT 99
=P B + ga' — 254—575;; =ga’
6H* 2 T ) aT 945"  oT -3)
P8 g, 8q 39, 3qy 0q, 3,

Let us now take the Lagrange Equations (2.7). Using equality (3.1) it

is written as aT
Pa =5E+Qa

By combining thege equations with {3.3) we pass to the canonic equatlons
oH* __oH* 4
! == ! + Qu (3' )
ap, ’ @ éqa
Equations {3.4%) have a form of the canonic Hamiltonian equations 1f the
forces acting on the system admit of a force function. JTndeed, by intro-
ducing in this case the Hamlilton function ¥ = g* — U , we lmmediately get

Ga

oH ' aH
9o =5 o = (3.9)
Thus, the equations of motlon of the controlled system 1ln the general
case may be written in the form of canonic equatlons. However, 1f the for-
ces acting on the system admit of a force function, then these equations

reduce to the canonic Hamlltonian equations.

4, In the preceding Sections 1t was shown that the equations of motion
of a controlled system may be written as second-order Lagrange equations
and as canonic equations. Let us show that they may be written in a third
fundamental form i.e. as Appell equations. To do this let us differentiate
twice with respect to time, the expressions (2.2) for the Cartesian coordi-~
nates of the system points. We get the equalities

—-28 axi ” B

where the dots stand for terms not depending on the second derivatives of
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the generalized coordinates. From these equalities we find
3:1':," _ azi
3q,” ~ 9gq

-1 o

By substituting the latter identities into Equations (2.3} for the possi-
ble displacements of the system, we obtain

a L4
dz; = 2§7£2f-bqa

Using these equations let us transform the kinematlc part of the funda=~
mental equation of mechanics (1.2), We have

2 m;x 0z == zmix{' 2%:-?,— dq. = Z 0qa Zmix{' -z% == 2-«%‘—8‘;—; LT
where by § we denote the acceleration energy of the system
§ = 3D mizn"
On the other hand, on the basis of equalities (2.3), we find
EX.;GI; = 2 X; E—g%:: 0g. = 2 QaGQ¢
where Ga are the generalized forces.
The fundamental equation of mechanics ¢an now be written as

2 (50 — 0= 02 = 4.1

Hence, because of the independence of the quantlties B8, we obtain the
required equation as
5o — Q=0 (4.2)

[ 4

8. Let us now consider a canonic transformation of the equations of
motion of the controlled mechanical system.

The problem is posed in the following way: among all the possible trans-
formations g<* = ¢*(g, v, 8, u); pa* = po* (¢, p, 8, ) (5'1)

of the canonic variables g and p to 2n new variables g* and p* , to
find such under which the Hamiltonian form of equations (3.5) of motion of
the controlled mechanical system 18 preserved., The control parameters,
which along with the generallzed coordinates and momenta are variables of
the system, participate in transformations (5.1) but are themselves not sub-
jeet to transformation.

The peculiarity of the atatement of the problem of the canocnic transfor-
mations of the equations of motion of controlled mechanical systems, consists
in the following: 1t is required to find such canonic transformations of a
part of the variables of the system of equations of motion having a Hamil-
tonian form, that under these transformation the equations for the trans-
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formed variables preserve the Hamiltonian form.

The considered question is closely connected with Pfaffian forms; more
precisely, to the properties of invarisht connective forms and thelr adjoint
system. Let us first consider thils in a general formulation., Let us take
any Pfaffian form

w = z A‘rdgr

where the A, 4are some functions of the variables ¢ . The bilinear co-
variant of this form is given by the expression [ 2]

e

where 4% and 8% are two groups of differentials of varisables ¢ . An
impertant property of a bilinear covariant is its invariance to changes in
the variables: the transformed bilinear covariant will be the bilinear co-
variant of the transformed form; 1n other words

2 (2—/::- _ ) dE4OE,* = D) (‘% —% )ditég. (5.2)

E-:* = gr* (gp 4wy gp), ZAt*dgt* = 2 A't dgr

The system of equations
a4
Z(aa ag dt. =0 c=14,...,p

by which the bilinear covariant of the given Pfaffian form vanishes identi-
cally relative to the 6§c , is called the adjoint system of the glven form.
As was the bilinear covariant, the adjoint system is invarlantly {with re-
spect to changes in the variables) connected with the form w ; the trans-
formed adjoint system 1s the adjoint system of the transformed form.

where

The properties of the invariant connectlons of the billnear covariant and
the adjoint system with the Pfaffian form hold in conformity with the same
transformation of the variables, Let us assume that the transformation
affects only a part of the variables & . Let these be the first ; vari-

ables. Then
B =050%En.. &) E*1e = Eiie (5.3)

Let us set 8%;.s = dEi8, which can be done because of the arbitrariness
and independence of the differential 4¢ and &g . Let us show that in
this case the bilinear covariant A vanlshes by virtue of Equations

A, 04
Z(ag agk>d§e"‘0 A=1,....10) (5.4)

Indeed, it is not difficult to convince ourselves that because of the
conditions 8E;,e = df;, and of Equations (5.4), the billnear covariant

reduces to
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84 a4
A l &
A =3k — ) e
On the other hand, from system (5.4) we find
94, 84,4 3«41
S d == d
Z( o O, ) Bue = — X[ M
and, consequently, the bilinear covarlant A 1s written as
04
— A
a-— 3 - ag)da»dew
which is what was required. Let us now take the bilinear covariant
i 94>
* —_— e %
A = 3 (G — 7 ) de-Ms
of the transformed form w . By what was just shown, this vanishes by virtue

of Equations
d4.*  8A,e _
2 (aEA* FEC ) dg* = A=1..,0 (5.5)

However, because of relations (5.2) the bilinear covariant A* vanishes

by virtue of Equations (5.4). Consequently, Equaticns (5.5) are equivalent
to Equations (5.%).

The system of equations (5.4) is a subsystem of the adjoint system of
form « . By convention we shall call it the partial adjoint system of form
w in the variables ¢&,,..., & . Then the obtained result can be formula-
ted in the following way: under a partial transformation of variables (5.3)
the partial adjolnt system 1s invariantly connected with its own form,

Let us now return to the problem of the canonic transformations of the
equations of motlon of the controlled mechanical system.

Let us prove a theorem. If transformations (5.1) {in the space of the
varlables ¢, p, u, t) identically satisfy the relation

N pa*dga* = ) padge + Kdt + DK, du, + dW (5.6)

where g, Kv and ¥ are some functions of the generalized coordinates of
the momenta, of time, and of the control parameters, then transformations
(5.1) are canonic. Indeed, identity (5.6), belng rewritten as

3 pa*dge* — (H + K) dt — D Kdu, — dW = ) pdq, — Hdt

signifies that as a result of transformations (5.1} the form cccurring on

the right-hand side 1s transformed to the form occurring on the left-hand
side,

It i1s easy to verify that the partial adjoint systems of these forms,
under a transformation of variables, will be, respectively, the system {3.5)



292 V.I. Kirgetov

and the system s
H+K K
dge* — —(—j—)d t— N du, =0

pa*

dp* + 20D 4 +§]a du, =0 .7)

By virtue of the previously indlcated property of invariant connection of
the form and its partisl adjoint system, the system {5.7) should be obtained
as a result of transforming of the system (3.5).

On the other hand, system (5.7) has the Hamilton form

dgg* 8 dp,* 20 )
o o PR @=H+K+ Y Ku) (5.8)

Hence transformations (5.1) are canonic, which is what was required.

The presence in (5.6) of the undetermined functions )X and XV allows
us to consider as a condition of canonic transformation, instead of -(5.6),
the simpler condition

Y y
2 Pa*dge® = Y padge + dW (5.9)
in which, however, the differentiation 1s carried out for constant ¢ and
u,, - Condition (5.9) is convenient for an explicit representation of the

canonic transformations in terms of generating functions. Let us assume

that transformations {5.1) are such that
g™ 05 - )
3Py, Pas -+ Pp)

Then, the first group of equalities in «(5.1) can be solved wilth respect
to the canonic ‘momenta p and, consequently, the variables ¢ and g¢* can
be taken to be independent. Under these conditlons, ldent.ity {(5.9) gives

Pt = W [ 8g*,  pa= — Wi dg (5-10)

The function W 1s called the generating function of the canonic trans-
formations. As a result of the canonic transformations, system (3.5) trans-
forms to system (5.8).

Let us find expressions for the functions & and XV in terms of the
generating function. For thils we substitute Expressions (5.10) into identi-
ty (5.6). By expanding'dW in it, we find

K = — aW /ot K,= —08W/ou,
The new Hamilton function thus is
W ow
®=H-"" — Eu,

v

Let us 1llustrate the results obtained by a simple example. Let there be
given the canonic system
aq aH dp oH
7 dp dr = 7 aq (H = qu-tp)
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Let us subject it to canonic transformations with & generating function
¥ = ugg*. Then the transformed system is

dg* 80 opr 90
dt —9p* &t~ gt

The square brackets here denote the passage to the new variables ¢* and
p*. Let us show that this is indeed so. By substituting the expression for
¥ into Eguations (5‘10) we find the explicit forms of the canonic transfor-
mations p* =gy, p =~ @¥y .

In the original system let us now expand the function F and in it pass
to the new variables, We get

((D = H %;;*f u'=lqu -+ p— qq"‘u’}} (5.11}

da* 4 dap* w’
Tel—en, Geutr (5.42)

On the other hand, let us expand system (5.11). The function & in vari-
ables p* and ¢* is written as

7

u
O = p* — g*u — q*p#-?

By substituting this into system (5.]1) we again arrive at system (5.12).
Which is what was required.

8. Up to this point the constraints on the system have beer. taken to be
holonomic. Let us now assume that the constraint equatlons {including the
parametrid'constraints) may depend on the velocities of the system points.
Let ¢,,...,4, be the Lagrange coordinates of the system and let the system
be subject to the nonholonomic constraints

F'{ (ql’ S ] qs1 q11‘! v oy q;', ty uls » ooy uk) = 0 (6.1)

Note . Notall eguations of system {6.1} need contain the control
parameters. The form of {6,1) for the nonholonomic constraint equations of
the system is taken solely in order to simplify the computations.

An example of a system with constraints of form (6.1) 1s the ordinary
bicycle rolling without slippage on a horizontal plane. We can be convinced
of this by setting up the constraint equations for the bleycle. The position
of the bicycle, obviously, will be given If we are given the coordinates x
and y of the center of the rear wheel of the bicycle, the angle y§ of the
rotation of the bicycle frame around a vertical axls, the Inclination § of
the bicycle frame to the horizon, the turn y of the steering bar {control
parameter), and the angles g and g, of the turns around their own axes
of, respectlively, the rear and front wheels of the blcycle. For simplicity
we shall consider that the bicycle remains vertical. In this case the con-
straint equatlions to which the reer wheel of the blcycle is subject, will be

'+ 2@ eosy = O, Y -+ e@'sing =0 (6.2)

where g 1is the radius of the blcycle wheel. By taking into account that
the coordinates of the center of the front wheel of the bicycle will be

z - bcosy, y--bsiny

where 3 1is the distance between the centers of the wheels, for the con-
straints on the front wheel of the bicycle we have the analogous equations

(z + b cos ) + ap,” cos(p + u) = 0, v + b sing) + e sinfp -+ ¥) = 0
These equations are easily tranaformed to the following final form
¢ + @, cos u =0, by + ag,sin u = 0 (6.3)
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Equations (3.2) and {6.3) form a complete system of nonholonomic con-
straints for tne bicycle. Obviously, they have the form of Equations (6.1).
Summarizing the definition of possible displacement as taken for holo-
nomic controlled systems (relations (1.3)), let us define the possible dis-
placements of controlled systems in the presence of constraints (6.1), by

the relations aF

D7 8= (6.4)

Let us find the equatlons of motion of the system under constraints {6.1).
After introduction of Lagrange coordinates, the fundamental equation of
mechanics 1s written as

d oT  oT _
Z(EW—EQ”Qa)é%“-O (6.5)

In case the constraints (6.1) are absent, all the bg, are independent,
and from relation (6.5) follows the Lagrange equations for holonomic systems.
In the considered case of a nonholonomlc¢ system, the quantities 8g are no
longer independent. They are constrained by relations (6.4). In this case
the equatidns of motlon of the system with multipliers are easily obtained
from (6.5). They have the form

d arT T ar
Gy~ Gy = O 2 g (6.6)

where AY are the multipliers, subject to determination.

The equations of motion of nonholonomic controlled systems may be written
also in the form of Appell equations. To this end, let us supplement Equa-
tions (6.1) by the relations

q)x (qu [ 9'1', voe ey G’s', t» Ugy o o o uk) == Dy (6.7)

in such a way that the system of relations (6.1) and (6.7) will be solvable
with respect to the derivatives ¢, ...,g,” . By taking into account that
the quantitles w, denote the numerlcal values of the functions § for
values of the arzuments satisfylng the constraint equations (6.1), we con-
¢lude by virtue of the assumptions made with respect to (.7) that relations
(6.1) and {6.7) establish a one-to-cne correspondence between the arbitrary
w, and the manifold of kinematically admisslible velocitles of the system.
On the other hand, this correspondence is given by (6.7), on the other, by
whe relation'a‘qa, = Qa (Grs + + s Gor Oy =+ vy By By Uy v oy Up) (6.8)

which are obtained by solving relations (6.1) and (6.7).
Let us define the gquantities 6ﬁx by the equalities
20,
88, = Zg-qm,« 3qa (6.9)
o

Relations (6.9),together with (6.4), establish a one-to-one corresponence
between the arbitrary quantities éﬁx and the possible dlsplacemencs of the
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system. Indeed, a specific system of quantities §0,. by virtue of {6.9)
corresponds to every possible displacement of the system. On the other hand,
the determinants of systems {6.4) and {6.38) will be the Jscoblans of systems
(6.1) and (6.7), and these latter are different from zero. Consequently,
the system of relations (6.%) and (6.9) may be solved with respect to 8¢,
and hence to each system of values 61‘},‘ there corresponds a possible dls-
placement of the mechanlcal system.

It is not difficult to see that the equalities expressing 6ga in terms
of 89,, may be written as

i/
3ge = D5t o O (6.10)
To prove this let us substitute the latter expression for agu into re-
lation {6.4), we get gF,, d¢,
ana do, g0 08 =0 (6.11)
But by (6.4) and (6.8)
261’ A, —0

aga 6&)

Therefore, equality (6.11) 1s satisfied identically with respect to 6\‘}*.
Which 1s what we required,

Let us introduce the acceleration energy S (¢y, ¢'y 9"y ¢, U, u'). Then the
fundamental equation of mechanics may be written in the form {4 1).

Let us note that from equality {6.8} follows the identity

99, 99,
do,’ - Jo,

and, consequently, equality {6.10) may be written as
é‘@a'
8qo = Z@S? 30, (6.12)

In the assumptions of equalities (6.10) and (6.12) let us now transform
the fundamental equation of mechanics {4.1). We have

3 (g — 02 800 = Be g 900 — B agoe 80 =
~D(E g )on=0 (o0 = Teg ) @13

where S* is the acceleration energy transformed to the variables w,

Equality (6.13) is satisfied for all 00«. By taking into account that
the latter are completely arbitrary, from (6.13) we get

as*
sy ~ =0
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This 1s the desired equation. The choice of quantitiles w, 1s connected
with relations (6.7), which practically are given arbitrarily. Therefore,
the 1ndependents of the derivetives q; may be taken as the gquantities w, .
In thls case the equations of motion of the controlled system under conslder-
ation can be written completely in terms of a Lagrange coordinate'system.
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